algorithm - python所有組合 - python排列組合不重複



算法來生成列表的所有可能的排列? (20)

Bourne shell解決方案 - 總共四行(沒有參數情況下的測試):

test $# -eq 1 && echo "$1" && exit
for i in $*; do
  $0 `echo "$*" | sed -e "s/$i//"` | sed -e "s/^/$i /"
done

https://src-bin.com

假設我有n個元素的列表,我知道有n個元素! 可能的方法來訂購這些元素。 什麼是算法來生成這個列表的所有可能的排序? 例如,我有列表[a,b,c]。 該算法會返回[[a,b,c],[a,c,b],[b,a,c],[b,c,a],[c,a,b],[c,b , 一個]]。

我正在閱讀這裡http://en.wikipedia.org/wiki/Permutation#Algorithms_to_generate_permutations

但維基百科從來沒有擅長解釋。 我不太了解它。


Answer #1

Java版本

/**
 * @param uniqueList
 * @param permutationSize
 * @param permutation
 * @param only            Only show the permutation of permutationSize,
 *                        else show all permutation of less than or equal to permutationSize.
 */
public static void my_permutationOf(List<Integer> uniqueList, int permutationSize, List<Integer> permutation, boolean only) {
    if (permutation == null) {
        assert 0 < permutationSize && permutationSize <= uniqueList.size();
        permutation = new ArrayList<>(permutationSize);
        if (!only) {
            System.out.println(Arrays.toString(permutation.toArray()));
        }
    }
    for (int i : uniqueList) {
        if (permutation.contains(i)) {
            continue;
        }
        permutation.add(i);
        if (!only) {
            System.out.println(Arrays.toString(permutation.toArray()));
        } else if (permutation.size() == permutationSize) {
            System.out.println(Arrays.toString(permutation.toArray()));
        }
        if (permutation.size() < permutationSize) {
            my_permutationOf(uniqueList, permutationSize, permutation, only);
        }
        permutation.remove(permutation.size() - 1);
    }
}

例如

public static void main(String[] args) throws Exception { 
    my_permutationOf(new ArrayList<Integer>() {
        {
            add(1);
            add(2);
            add(3);

        }
    }, 3, null, true);
}

輸出:

  [1, 2, 3]
  [1, 3, 2]
  [2, 1, 3]
  [2, 3, 1]
  [3, 1, 2]
  [3, 2, 1]

Answer #2

下面是ColdFusion的一個實現(由於ArrayAppend()的合併參數,因此需要CF10):

public array function permutateArray(arr){

    if (not isArray(arguments.arr) ) {
        return ['The ARR argument passed to the permutateArray function is not of type array.'];    
    }

    var len = arrayLen(arguments.arr);
    var perms = [];
    var rest = [];
    var restPerms = [];
    var rpLen = 0;
    var next = [];

    //for one or less item there is only one permutation 
    if (len <= 1) {
        return arguments.arr;
    }

    for (var i=1; i <= len; i++) {
        // copy the original array so as not to change it and then remove the picked (current) element
        rest = arraySlice(arguments.arr, 1);
        arrayDeleteAt(rest, i);

         // recursively get the permutation of the rest of the elements
         restPerms = permutateArray(rest);
         rpLen = arrayLen(restPerms);

        // Now concat each permutation to the current (picked) array, and append the concatenated array to the end result
        for (var j=1; j <= rpLen; j++) {
            // for each array returned, we need to make a fresh copy of the picked(current) element array so as to not change the original array
            next = arraySlice(arguments.arr, i, 1);
            arrayAppend(next, restPerms[j], true);
            arrayAppend(perms, next);
        }
     }

    return perms;
}

基於上面的KhanSharp的js解決方案。


Answer #3

以下是Python中的一種算法,它適用於數組:

def permute(xs, low=0):
    if low + 1 >= len(xs):
        yield xs
    else:
        for p in permute(xs, low + 1):
            yield p        
        for i in range(low + 1, len(xs)):        
            xs[low], xs[i] = xs[i], xs[low]
            for p in permute(xs, low + 1):
                yield p        
            xs[low], xs[i] = xs[i], xs[low]

for p in permute([1, 2, 3, 4]):
    print p

你可以在這裡嘗試一下自己的代碼: http://repl.it/J9v : http://repl.it/J9v


Answer #4

另一個在Python中,它不是@cdiggins的,但我認為它更容易理解

def permute(num):
    if len(num) == 2:
        # get the permutations of the last 2 numbers by swapping them
        yield num
        num[0], num[1] = num[1], num[0]
        yield num
    else:
        for i in range(0, len(num)):
            # fix the first number and get the permutations of the rest of numbers
            for perm in permute(num[0:i] + num[i+1:len(num)]):
                yield [num[i]] + perm

for p in permute([1, 2, 3, 4]):
    print p

Answer #5

只是要完成,C ++

#include <iostream>
#include <algorithm>
#include <string>

std::string theSeq = "abc";
do
{
  std::cout << theSeq << endl;
} 
while (std::next_permutation(theSeq.begin(), theSeq.end()));

...

abc
acb
bac
bca
cab
cba

Answer #6

在下面的Java解決方案中,我們利用了字符串不可變的事實,以避免在每次迭代時克隆結果集。

輸入將是一個字符串,例如“abc”,輸出將是所有可能的排列:

abc
acb
bac
bca
cba
cab

碼:

public static void permute(String s) {
    permute(s, 0);
}

private static void permute(String str, int left){
    if(left == str.length()-1) {
        System.out.println(str);
    } else {
        for(int i = left; i < str.length(); i++) {
            String s = swap(str, left, i);
            permute(s, left+1);
        }
    }
}

private static String swap(String s, int left, int right) {
    if (left == right)
        return s;

    String result = s.substring(0, left);
    result += s.substring(right, right+1);
    result += s.substring(left+1, right);
    result += s.substring(left, left+1);
    result += s.substring(right+1);
    return result;
}

同樣的方法可以應用於數組(而不是字符串):

public static void main(String[] args) {
    int[] abc = {1,2,3};
    permute(abc, 0);
}
public static void permute(int[] arr, int index) {
    if (index == arr.length) {
        System.out.println(Arrays.toString(arr));
    } else {
        for (int i = index; i < arr.length; i++) {
            int[] permutation = arr.clone();
            permutation[index] = arr[i];
            permutation[i] = arr[index];
            permute(permutation, index + 1);
        }
    }
}

Answer #7

在斯卡拉

    def permutazione(n: List[Int]): List[List[Int]] = permutationeAcc(n, Nil)



def permutationeAcc(n: List[Int], acc: List[Int]): List[List[Int]] = {

    var result: List[List[Int]] = Nil
    for (i ← n if (!(acc contains (i))))
        if (acc.size == n.size-1)
            result = (i :: acc) :: result
        else
            result = result ::: permutationeAcc(n, i :: acc)
    result
}

Answer #8

如果有人想知道如何在javascript中進行排列組合。

理念/偽

  1. 一次選擇一個元素
  2. 置換元素的剩餘部分,然後將拾取的元素添加到所有的置換中

例如。 'a'+ permute(bc)。 bc的排列是bc&cb。 現在添加這兩個將給abc,acb。 同樣,選擇b + permute(ac)將提供bac,bca ...並繼續前進。

現在看代碼

function permutations(arr){

   var len = arr.length, 
       perms = [],
       rest,
       picked,
       restPerms,
       next;

    //for one or less item there is only one permutation 
    if (len <= 1)
        return [arr];

    for (var i=0; i<len; i++)
    {
        //copy original array to avoid changing it while picking elements
        rest = Object.create(arr);

        //splice removed element change array original array(copied array)
        //[1,2,3,4].splice(2,1) will return [3] and remaining array = [1,2,4]
        picked = rest.splice(i, 1);

        //get the permutation of the rest of the elements
        restPerms = permutations(rest);

       // Now concat like a+permute(bc) for each
       for (var j=0; j<restPerms.length; j++)
       {
           next = picked.concat(restPerms[j]);
           perms.push(next);
       }
    }

   return perms;
}

花點時間了解這一點。 我從JavaScript獲得了這個代碼( pertumation in JavaScript


Answer #9

我已經用ANSI C編寫了這個遞歸解決方案。Permutate函數的每次執行提供了一個不同的排列,直到所有的排列完成。 全局變量也可以用於變量fact和count。

#include <stdio.h>
#define SIZE 4

void Rotate(int vec[], int size)
{
    int i, j, first;

    first = vec[0];
    for(j = 0, i = 1; i < size; i++, j++)
    {
        vec[j] = vec[i];
    }
    vec[j] = first;
}

int Permutate(int *start, int size, int *count)
{
    static int fact;

    if(size > 1)
    {
        if(Permutate(start + 1, size - 1, count))
        {
            Rotate(start, size);
        }
        fact *= size;
    }
    else
    {
        (*count)++;
        fact = 1;
    }

    return !(*count % fact);
}

void Show(int vec[], int size)
{
    int i;

    printf("%d", vec[0]);
    for(i = 1; i < size; i++)
    {
        printf(" %d", vec[i]);
    }
    putchar('\n');
}

int main()
{
    int vec[] = { 1, 2, 3, 4, 5, 6 }; /* Only the first SIZE items will be permutated */
    int count = 0;

    do
    {
        Show(vec, SIZE);
    } while(!Permutate(vec, SIZE, &count));

    putchar('\n');
    Show(vec, SIZE);
    printf("\nCount: %d\n\n", count);

    return 0;
}

Answer #10

我知道這是一個非常非常古老的,甚至在今天的主題,但我仍然想提供一個友好的JavaScript答案,因為它在您的瀏覽器中運行的簡單原因。

我還添加了debugger指令斷點,以便您可以逐步完成代碼(需要chrome)以查看該算法的工作原理。 使用chrome打開開發控制台(Windows中的F12或者Mac上的CMD + OPTION + I ),然後單擊“運行代碼段”。 這實現了@WhirlWind在他的答案中提供的相同的確切算法。

您的瀏覽器應該暫停執行debugger指令。 使用F8繼續執行代碼。

瀏覽代碼,看看它是如何工作的!

function permute(rest, prefix = []) {
  if (rest.length === 0) {
    return [prefix];
  }
  return (rest
    .map((x, index) => {
      const oldRest = rest;
      const oldPrefix = prefix;
      // the `...` destructures the array into single values flattening it
      const newRest = [...rest.slice(0, index), ...rest.slice(index + 1)];
      const newPrefix = [...prefix, x];
      debugger;

      const result = permute(newRest, newPrefix);
      return result;
    })
    // this step flattens the array of arrays returned by calling permute
    .reduce((flattened, arr) => [...flattened, ...arr], [])
  );
}
console.log(permute([1, 2, 3]));


Answer #11

正如WhirlWind所說,你從一開始就開始。

你將光標與每個剩餘的值交換,包括光標本身,這些都是新的實例(我在示例中使用了int[]array.clone() )。

然後在所有這些不同的列表上執行排列,確保光標位於右側。

當沒有剩餘的值時(光標在最後),打印列表。 這是停止條件。

public void permutate(int[] list, int pointer) {
    if (pointer == list.length) {
        //stop-condition: print or process number
        return;
    }
    for (int i = pointer; i < list.length; i++) {
        int[] permutation = (int[])list.clone();.
        permutation[pointer] = list[i];
        permutation[i] = list[pointer];
        permutate(permutation, pointer + 1);
    }
}

Answer #12

這是PHP中的遞歸解決方案。 WhirlWind的帖子準確地描述了邏輯。 值得一提的是,生成所有置換運行在階乘時間,所以使用迭代方法可能是一個好主意。

public function permute($sofar, $input){
  for($i=0; $i < strlen($input); $i++){
    $diff = strDiff($input,$input[$i]);
    $next = $sofar.$input[$i]; //next contains a permutation, save it
    $this->permute($next, $diff);
  }
}

strDiff函數接受兩個字符串s1s2 ,並返回一個新的字符串,其中包含s1所有內容,而s2沒有元素(重複的內容)。 所以, strDiff('finish','i') => 'fnish' (第二個'i' 不會被刪除)。


Answer #13

這是一個java的遞歸代碼,這個想法是有一個前綴來添加其餘的字符:

public static void permutation(String str) { 
    permutation("", str); 
}

private static void permutation(String prefix, String str) {
    int n = str.length();
    if (n == 0) System.out.println(prefix);
    else {
        for (int i = 0; i < n; i++)
            permutation(prefix + str.charAt(i), str);
    }
}

例:

輸入=“ABC”; 輸出:

ABC ACB BAC BCA CAB CBA


Answer #14

這是我在Java上的解決方案:

public class CombinatorialUtils {

    public static void main(String[] args) {
        List<String> alphabet = new ArrayList<>();
        alphabet.add("1");
        alphabet.add("2");
        alphabet.add("3");
        alphabet.add("4");

        for (List<String> strings : permutations(alphabet)) {
            System.out.println(strings);
        }
        System.out.println("-----------");
        for (List<String> strings : combinations(alphabet)) {
            System.out.println(strings);
        }
    }

    public static List<List<String>> combinations(List<String> alphabet) {
        List<List<String>> permutations = permutations(alphabet);
        List<List<String>> combinations = new ArrayList<>(permutations);

        for (int i = alphabet.size(); i > 0; i--) {
            final int n = i;
            combinations.addAll(permutations.stream().map(strings -> strings.subList(0, n)).distinct().collect(Collectors.toList()));
        }
        return combinations;
    }

    public static <T> List<List<T>> permutations(List<T> alphabet) {
        ArrayList<List<T>> permutations = new ArrayList<>();
        if (alphabet.size() == 1) {
            permutations.add(alphabet);
            return permutations;
        } else {
            List<List<T>> subPerm = permutations(alphabet.subList(1, alphabet.size()));
            T addedElem = alphabet.get(0);
            for (int i = 0; i < alphabet.size(); i++) {
                for (List<T> permutation : subPerm) {
                    int index = i;
                    permutations.add(new ArrayList<T>(permutation) {{
                        add(index, addedElem);
                    }});
                }
            }
        }
        return permutations;
    }
}

Answer #15

這裡已經有很多很好的解決方案,但我想分享我是如何自己解決這個問題的,並希望這可能對那些也希望得到他自己的解決方案的人有所幫助。

在對這個問題進行了一些思考之後,我得到了兩個結論:

  1. 對於大小為n的列表L ,將有相同數量的解決方案,以列表的L 1 ,L 2 ... L n個元素開始。 因為總共有n! 大小為n的列表的排列,我們得到n! / n = (n-1)! n! / n = (n-1)! 每組中的排列。
  2. 2個元素的列表只有2個排列=> [a,b][b,a]

使用這兩個簡單的想法,我推導出以下算法:

permute array
    if array is of size 2
       return first and second element as new array
       return second and first element as new array
    else
        for each element in array
            new subarray = array with excluded element
            return element + permute subarray

這是我在C#中實現的方式:

public IEnumerable<List<T>> Permutate<T>(List<T> input)
{
    if (input.Count == 2) // this are permutations of array of size 2
    {
        yield return new List<T>(input);
        yield return new List<T> {input[1], input[0]}; 
    }
    else
    {
        foreach(T elem in input) // going through array
        {
            var rlist = new List<T>(input); // creating subarray = array
            rlist.Remove(elem); // removing element
            foreach(List<T> retlist in Permutate(rlist))
            {
                retlist.Insert(0,elem); // inserting the element at pos 0
                yield return retlist;
            }

        }
    }
}

Answer #16

這裡是R中的算法,以防止任何人需要避免像我必須加載額外的庫。

permutations <- function(n){
    if(n==1){
        return(matrix(1))
    } else {
        sp <- permutations(n-1)
        p <- nrow(sp)
        A <- matrix(nrow=n*p,ncol=n)
        for(i in 1:n){
            A[(i-1)*p+1:p,] <- cbind(i,sp+(sp>=i))
        }
        return(A)
    }
}

用法示例:

> matrix(letters[permutations(3)],ncol=3)
     [,1] [,2] [,3]
[1,] "a"  "b"  "c" 
[2,] "a"  "c"  "b" 
[3,] "b"  "a"  "c" 
[4,] "b"  "c"  "a" 
[5,] "c"  "a"  "b" 
[6,] "c"  "b"  "a" 

Answer #17

這裡有一個玩具Ruby方法,像#permutation.to_a一樣工作,可能會讓瘋狂的人更易讀。 這是hella緩慢,但也是5行。

def permute(ary)
  return [ary] if ary.size <= 1
  ary.collect_concat.with_index do |e, i|
    rest = ary.dup.tap {|a| a.delete_at(i) }
    permute(rest).collect {|a| a.unshift(e) }
  end
end

Answer #18
#!/usr/bin/env python
import time

def permutations(sequence):
  # print sequence
  unit = [1, 2, 1, 2, 1]

  if len(sequence) >= 4:
    for i in range(4, (len(sequence) + 1)):
      unit = ((unit + [i - 1]) * i)[:-1]
      # print unit
    for j in unit:
      temp = sequence[j]
      sequence[j] = sequence[0]
      sequence[0] = temp
      yield sequence
  else:
    print 'You can use PEN and PAPER'


# s = [1,2,3,4,5,6,7,8,9,10]
s = [x for x in 'PYTHON']

print s

z = permutations(s)
try:
  while True:
    # time.sleep(0.0001)
    print next(z)
except StopIteration:
    print 'Done'
['P', 'Y', 'T', 'H', 'O', 'N']
['Y', 'P', 'T', 'H', 'O', 'N']
['T', 'P', 'Y', 'H', 'O', 'N']
['P', 'T', 'Y', 'H', 'O', 'N']
['Y', 'T', 'P', 'H', 'O', 'N']
['T', 'Y', 'P', 'H', 'O', 'N']
['H', 'Y', 'P', 'T', 'O', 'N']
['Y', 'H', 'P', 'T', 'O', 'N']
['P', 'H', 'Y', 'T', 'O', 'N']
['H', 'P', 'Y', 'T', 'O', 'N']
['Y', 'P', 'H', 'T', 'O', 'N']
['P', 'Y', 'H', 'T', 'O', 'N']
['T', 'Y', 'H', 'P', 'O', 'N']
['Y', 'T', 'H', 'P', 'O', 'N']
['H', 'T', 'Y', 'P', 'O', 'N']
['T', 'H', 'Y', 'P', 'O', 'N']
['Y', 'H', 'T', 'P', 'O', 'N']
['H', 'Y', 'T', 'P', 'O', 'N']
['P', 'Y', 'T', 'H', 'O', 'N']
.
.
.
['Y', 'T', 'N', 'H', 'O', 'P']
['N', 'T', 'Y', 'H', 'O', 'P']
['T', 'N', 'Y', 'H', 'O', 'P']
['Y', 'N', 'T', 'H', 'O', 'P']
['N', 'Y', 'T', 'H', 'O', 'P']

Answer #19
public class PermutationGenerator
{
    private LinkedList<List<int>> _permutationsList;
    public void FindPermutations(List<int> list, int permutationLength)
    {
        _permutationsList = new LinkedList<List<int>>();
        foreach(var value in list)
        {
            CreatePermutations(value, permutationLength);
        }
    }

    private void CreatePermutations(int value, int permutationLength)
    {
        var node = _permutationsList.First;
        var last = _permutationsList.Last;
        while (node != null)
        {
            if (node.Value.Count < permutationLength)
            {
                GeneratePermutations(node.Value, value, permutationLength);
            }
            if (node == last)
            {
                break;
            }
            node = node.Next;
        }

        List<int> permutation = new List<int>();
        permutation.Add(value);
        _permutationsList.AddLast(permutation);
    }

    private void GeneratePermutations(List<int> permutation, int value, int permutationLength)
    {
       if (permutation.Count < permutationLength)
        {
            List<int> copyOfInitialPermutation = new List<int>(permutation);
            copyOfInitialPermutation.Add(value);
            _permutationsList.AddLast(copyOfInitialPermutation);
            List<int> copyOfPermutation = new List<int>();
            copyOfPermutation.AddRange(copyOfInitialPermutation);
            int lastIndex = copyOfInitialPermutation.Count - 1;
            for (int i = lastIndex;i > 0;i--)
            {
                int temp = copyOfPermutation[i - 1];
                copyOfPermutation[i - 1] = copyOfPermutation[i];
                copyOfPermutation[i] = temp;

                List<int> perm = new List<int>();
                perm.AddRange(copyOfPermutation);
                _permutationsList.AddLast(perm);
            }
        }
    }

    public void PrintPermutations(int permutationLength)
    {
        int count = _permutationsList.Where(perm => perm.Count() == permutationLength).Count();
        Console.WriteLine("The number of permutations is " + count);
    }
}




permutation